1,109 research outputs found

    The Effects of d_{x^2-y^2}-d_{xy} Mixing on Vortex Structures and Magnetization

    Full text link
    The structure of an isolated single vortex and the vortex lattice, and the magnetization in a dd-wave superconductor are investigated within a phenomenological Ginzburg-Landau (GL) model including the mixture of the dx2−y2d_{x^2-y^2}-wave and dxyd_{xy}-wave symmetry. The isolated single vortex structure in a week magnetic field is studied both numerically and asymptotically. Near the upper critical field Hc2H_{c2}, the vortex lattice structure and the magnetization are calculated analytically.Comment: 14 pages, REVTeX, 2 EPS figures, Journal of Physics: Condensed Matter (in press

    Andreev Bound States in the Kondo Quantum Dots Coupled to Superconducting Leads

    Full text link
    We have studied the Kondo quantum dot coupled to two superconducting leads and investigated the subgap Andreev states using the NRG method. Contrary to the recent NCA results [Clerk and Ambegaokar, Phys. Rev. B 61, 9109 (2000); Sellier et al., Phys. Rev. B 72, 174502 (2005)], we observe Andreev states both below and above the Fermi level.Comment: 5 pages, 5 figure

    SET based experiments for HTSC materials: II

    Full text link
    The cuprates seem to exhibit statistics, dimensionality and phase transitions in novel ways. The nature of excitations [i.e. quasiparticle or collective], spin-charge separation, stripes [static and dynamics], inhomogeneities, psuedogap, effect of impurity dopings [e.g. Zn, Ni] and any other phenomenon in these materials must be consistently understood. In this note we further discuss our original suggestion of using Single Electron Tunneling Transistor [SET] based experiments to understand the role of charge dynamics in these systems. Assuming that SET operates as an efficient charge detection system we can expect to understand the underlying physics of charge transport and charge fluctuations in these materials for a range of doping. Experiments such as these can be classed in a general sense as mesoscopic and nano characterization of cuprates and related materials. In principle such experiments can show if electron is fractionalized in cuprates as indicated by ARPES data. In contrast to flux trapping experiments SET based experiments are more direct in providing evidence about spin-charge separation. In addition a detailed picture of nano charge dynamics in cuprates may be obtained.Comment: 10 pages revtex plus four figures; ICMAT 2001 Conference Symposium P: P10-0

    Probing spin and orbital Kondo effects with a mesoscopic interferometer

    Full text link
    We investigate theoretically the transport properties of a closed Aharonov-Bohm interferometer containing two quantum dots in the strong coupling regime. We find two distinct physical scenarios depending on the strength of the interdot Coulomb interaction. When the interdot Coulomb interaction is negligible only spin fluctuations are important and each dot develops a Kondo resonance at the Fermi level independently of the applied magnetic flux. The transport is characterized by the interference of these two independent Kondo resonances. On the contrary, for large interdot interaction, only one electron can be accommodated onto the double dot system. In this situation, not only the spin can fluctuate but also the orbital degree of freedom (the pseudo-spin). As a result, we find different ground states depending on the value of the applied flux. When ϕ=π\phi=\pi (mod 2π2\pi) (ϕ=2πΦ/Φ0\phi=2\pi\Phi/\Phi_0, where Φ\Phi is applied flux, and Φ0=h/e\Phi_0=h/e the flux quantum) the electronic transport can take place via simultaneous correlations in the spin and pseudo-spin sectors, leading to the highly symmetric SU(4) Kondo state. Nevertheless, we find situations with ϕ>0\phi>0 (mod 2π2\pi) where the pseudo-spin quantum number is not conserved during tunneling events, giving rise to the common SU(2) Kondo state with an enhanced Kondo temperature. We investigate the crossover between both ground states and discuss possible experimental signatures of this physics as a function of the applied magnetic flux.Comment: 12 pages, 3 figures; extended discussions, improved presentatio

    Charge Frustration Effects in Capacitively Coupled Two-Dimensional Josephson-Junction Arrays

    Full text link
    We investigate the quantum phase transitions in two capacitively coupled two-dimensional Josephson-junction arrays with charge frustration. The system is mapped onto the S=1 and S=1/2S=1/2 anisotropic Heisenberg antiferromagnets near the particle-hole symmetry line and near the maximal-frustration line, respectively, which are in turn argued to be effectively described by a single quantum phase model. Based on the resulting model, it is suggested that near the maximal frustration line the system may undergo a quantum phase transition from the charge-density wave to the super-solid phase, which displays both diagonal and off- diagonal long-range order.Comment: 6 pages, 6 figures, to appear in Phys. Rev.

    Spatiotemporal Stochastic Resonance in Fully Frustrated Josephson Ladders

    Full text link
    We consider a Josephson-junction ladder in an external magnetic field with half flux quantum per plaquette. When driven by external currents, periodic in time and staggered in space, such a fully frustrated system is found to display spatiotemporal stochastic resonance under the influence of thermal noise. Such resonance behavior is investigated both numerically and analytically, which reveals significant effects of anisotropy and yields rich physics.Comment: 8 pages in two columns, 8 figures, to appear in Phys. Rev.

    First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions

    Full text link
    We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (K+→μ+νμK^+ \rightarrow \mu^+ \nu_\mu) at the NuMI beamline absorber. These signal νμ\nu_\mu-carbon events are distinguished from primarily pion decay in flight νμ\nu_\mu and ν‾μ\overline{\nu}_\mu backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9σ\sigma level. The muon kinetic energy, neutrino-nucleus energy transfer (ω=Eν−Eμ\omega=E_\nu-E_\mu), and total cross section for these events is extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of ω\omega using neutrinos, a quantity thus far only accessible through electron scattering.Comment: 6 pages, 4 figure
    • …
    corecore